Name:				
Date:				

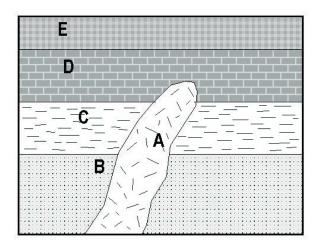
GEOLOGIC TIME UNIT - Notes 1

Question: How do we tell time?

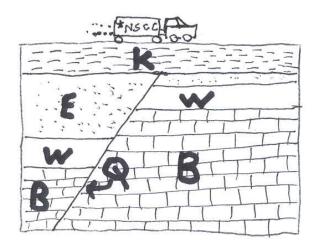
A. ORGANIZING TIME IN GEOLOGY

	How old	are layers	3 and 4
	Lin	nestone #4	1
*****	14123 #35743 14123 #35743	Lava Flow (80 mya)	
		Shale #3	لممر
	Sar	ndstone #2	
		Shale #1	
	Zones of Contact Metan	norphism	

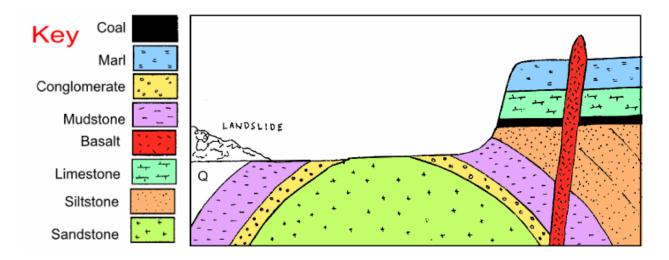
•Each layer represents rocks laid down at a


•Which rocks are the oldest? Youngest?

Geologic LAW	Description	Diagram
Superposition		
Original Horizontality		
Cross-Cutting Relationships		
Unconformity		

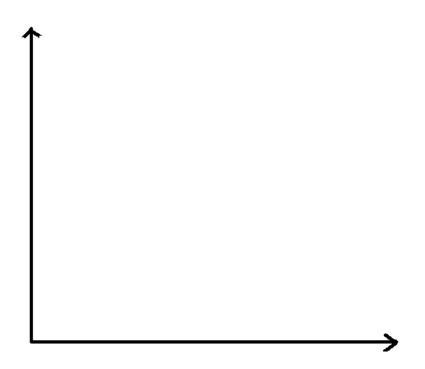

- - Definition:

Examples - use absolute dating to order the rock layers from OLDEST to YOUNGEST:


Example 1:

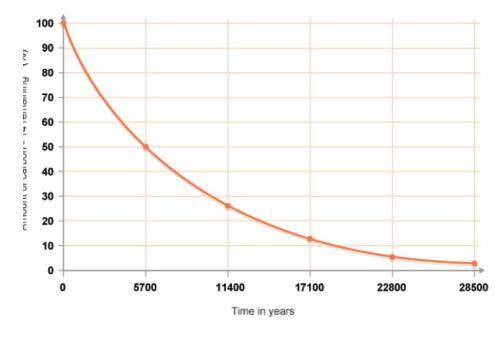
Example 2:

Example 3:



B. **ABSOLUTE DATING**

Definition:				
Techniques to find exact dates:				
1. Radioactive decay				
 Isotopes break down over time a 	at a rate.			
The "clock" starts when igneous rock crystallizes out of				
Draw the decay of Uranium 238 isotope:				
Parent	Daughter			


Half-Life Decay Graph

Draw a graph showing the decay of parent isotopes into the more stable daughter products:

Questions:

Carbon Dating Graph

- 1. What is the half-life of carbon-14?
- 2. How old is the sample if there is 25% of the parent carbon-14 left in it?
- 3. How old is the sample if there is 95% of the daughter isotope left?

Other Examples of Radioactive Decay:

	Parent/Daughter isotopes.	<u>Halt-Lite.</u>
Carbon-Nitrogen		
Potassium-Argon		

Rubidium-Strontium

Uranium-Lead

Uranium-Lead

Other Methods of Absolute Dating:

- Tree rings Dendrochronology = _____
- Valves = _____
- Ice Cores = ______es

C. FOSSILS

 Fossils are 	·	of once-living organisms.		
in a	over	= EVOLUTION.		
Evolution is seen in the diverse				

Types of Fossilization:

Type of Fossilization	Description	Drawing
	Actual, unchanged remains of plants or animals are preserved, in amber of permafrost.	
	Soft parts disappear, while hard parts are replaced by minerals in seeping groundwater.	
	Minerals that make the actual hard parts of the remains change and recrystalize, filling gaps.	
	Molds - an imprint of the remains in rock. Cast - when new material fill the mold and hardens into a cast.	
	Evidence of life other than actual remains. Eg. Footprints, tracks, burrows and coprolites.	