## Geology 12 Igneous Rocks: Part #3-EXTRUSIVE STRUCTURES

Lecture Notes, Figures, and Images



# How do we classify volcanoes?



# Geol. 12 - Igneous Rocks - Part #2:

## 1. Volcanic / Igneous Extrusive Structures

## 2. Volcanic Lava / Eject types

# Volcanic / Igneous Extrusive

### <u>Structures</u> :

- 1. Shield Volcanoes
- 2. Cinder Cones
- 3. Composite Cones
- 4. Columnar Jointing
- 5. Volcanic (Lava) Domes
- 6. Lava Plateaus



Note the low profile...Why is this so?

## Built up of many thin layers of mafic lava flows



### Low viscosity!!!

#### **Shield volcano**



### **Shield volcano**

## **CINDER CONE** Built of pyroclastic ejected lava

# What's this?

### **Steeper sides!**



### **Cinder cone**



### **Cinder cone**









# **COMPOSITE CONE**



#### Mt. Fuji - A Famous Composite Cone



### Mt Fuji, Japan



## **Mount Rainier**



## **Mount Baker - seen from Vancouver**

# **Mount St Helens**

# Mount St Helens - 2014







## LAVA DOME





**A Summary of Basic Volcanic Rock Structures - Cone Types:** 



| Volcanic feature | Height in km | Width in km | Angle of slope |
|------------------|--------------|-------------|----------------|
| W                | 1.5          | 100         | 1-2 degrees    |
| х                | 10           | 100         | 5–10 degrees   |
| Y                | 5            | 20          | 20–30 degrees  |
| Z                | 0.3          | 1           | 30-40 degrees  |

# **Volcanic (LAVA) Dome**

#### Found at a felsic volcanic vent



### **DISTANT VIEW OF A LAVA DOME!**



#### **Mount St Helens, Washington**

## Same Dome...Close Up!





# Lava Flow / Plateau:



What Type of Magma would Produce this Structure? Explain How You Know...

# <u>Rift Zone</u>

## A "rift" or rip in the Earth's surface through which lava flows onto the surface...

Lava Plateaus arise from them!



### A close up of One Branch of A "Rift Zone" Also Known As A "Fissure" –

### Therefore eruption from these are

known as "Fissure Eruptions"

# What is this?

# Sill


#### Two imaginable modes of contraction for a hot lava flow









### As Seen From Above







### Giant's Causeway - Northern Ireland (2002)



# Each column always has 6 sides...

Ser.



# Volcanic neck - column of solidified lava inside a volcano vent, exposed by erosion



## Shiprock - New Mexico...



### **Devil's Tower - Wyoming...** A classic volcanic neck demonstrating columnar jointing!

### CLOSE ENCOUNTERS



## Drawing Review Assignment Part 2

Draw all igneous extrusive structures to top half of page

(Shield Volcano, Cinder Cone, Composite Volcano, Columnar Jointing, Volcanic Dome, Volcanic Neck, Lava Plateau)

> + Definitions on back of sheet



# How do we classify volcanoes?

# **Volcanic Lava / Eject types:**

- Formed From Lava
- Lava = magma that reaches the surface!
- You need to know Four main Types of materials ejected from volcanoes:

Ash Flows

**Pillow Lava** 

Pahoehoe



# <u>Ash Flows</u>

 Not really lava, rather a dense cloud of fine, hot, airborne ash mixed with gasses

• a.k.a....Nuee Ardente.

## **ASH FLOW**

a.k.a. "Nuee Ardente"

or "Pyroclastic Clouds"



### Ash Flow - Mt. St. Helen's

Ash flows are deadly...they travel at speeds up to 700 km/h and incinerate/asphyxiate everything in their path... You can't outrun them!

Ash Flows are the most <u>devastating</u> part of volcanic eruptions!

# What type of Volcanic cones would create this phenomena?

# What would the composition of the erupting material be?

### How can you tell?

#### **Ash Flows Create Thick Layers Of Ash!!**

### Theses Layers are from successive eruptions of Kilauea Volcano in Hawaii in 1790



- Formed when lava is extruded underwater.
- Results in bulbous pillow shaped deposits.





#### More Pillow Lava - Note <u>Roundness</u> in Cross-Section!



Hammer intended to provide a size scale

### **Pillow** lava





Photograph 4

### **Pillow lava**



### **Pillow lava**

## **Pahoehoe**

• Very "Runny" Fluid lava.

Cools with a smooth ropy surface.

## Notice The ropy Texture!!



### Pahoehoe lava



### Hot Lava - Cooling to form Pahoehoe...


#### Pahoehoe lava





#### Pahoehoe lava

# pahoehoe Texture





## <u>Aa</u>

- Very Thick lava.
- Produces rough, blocky lava flows.

# a-a texture

Jeff

21

#### Lava Cooling To Form "Aa"



#### Blocky, Rough "Aa"



### Lava River - Forms Lava Tubes!



### Inside An Extinct "Lava Tube"



Lava can be destructive, <u>but rarely kills people</u> because it moves slowly and we outrun it...it tends to damage property that gets in its way!

#### Ash Flows - a.k.a. "Nuee Ardente" or "Pyroclastic Clouds" are the real danger to human life!



See the person watching the "Show"