\qquad
Using the wave formula: wave speed, frequency and wavelength

Worked example

Q: A sound wave of frequency 220 Hz travels at a speed of $340 \mathrm{~m} / \mathrm{s}$ in air. What is its wavelength?
A: Wavelength, $\lambda=v \div f=340 \div 220=1.55 \mathrm{~m}$
(If the wave speed is in metres per second and the frequency is in hertz, the wavelength will be in metres)

Questions

1. Calculate the wave speed (in m / s) for the following waves:
a) A sound wave in steel with a frequency of 500 Hz and a wavelength of 3.0 metres.
b) a ripple on a pond with a frequency of 2 Hz and a wavelength of 0.4 metres.
c) A radio wave with a wavelength of 30 m and a frequency of $10,000,000$ hertz.
2. Calculate the wavelength (in metres) for the following waves:
a) A wave on a slinky spring with a frequency of 2 Hz travelling at $3 \mathrm{~m} / \mathrm{s}$.
b) An ultrasound wave with a frequency $40,000 \mathrm{~Hz}$ travelling at $1450 \mathrm{~m} / \mathrm{s}$ in fatty tissue.
c) A sound wave with frequency 440 Hz travelling at 340 metres per second in air.
3. Calculate the frequency (in Hz) for the following waves:
a) A sound wave of wavelength 10 metres travelling at 340 metres per second in air.
b) A wave on the sea with a speed of $8 \mathrm{~m} / \mathrm{s}$ and a wavelength of 20 metres.
c) A microwave of wavelength 0.15 metres travelling through space at $300,000,000 \mathrm{~m} / \mathrm{s}$.
